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INTRODUCTION 

Triaminoguanidlnium nitrate (TAG.NO^) should offer more than a 
passing interest on the basis of its nitrogen content alone. Com- 
pared to ammonium nitrate (35.0%N) or guanidinium nitrate (45.9%N), 
triaminoguanidlnium nitrate contains 58.7% total nitrogen. In 
spite of this attractive feature, the interest in TAG.NO3 has been 
limited so far mainly to its possible application in propellants 

technology. 

The structure of this salt was recently established by x-ray 
diffractometry (ref 1) which revealed the fact that the carbon 
atom, three hydrogen atoms, and the six nitrogen atoms of the 
triaminoguanidlnium (TAG+) ion lie in a mirror plane, while the 
primary amino hydrogens are reflected below and above this plane. 
A representation of the TAG+ ion structure found in the crystal of 
triaminoguanidlnium nitrate is shown in figure 1. 

Why the TAG+ ion in the crystal adopts this -configuration in 
preference to others obtainable by simple rotation across the N-N 
bonds is a challenging question. Are the factors which determine 
this preference dictated mainly by the crystalline forces or by the 
directional forces associated with hydrogen bonds? Or is the 
configuration of figure 1 preferred over others (the 180° rotation 
across the N-N bonds shown in figure 2, for example) simply because 
of its lower total energy content? Basically, these questions 
relate to the charge distribution in the cation which, in turn, 
sets the magnitude of the energy barrier to rotation across the N-N 
bonds. 

Considerations of this nature directs attention to the semi- 
empirical SCF-MD treatment, MIND0/3, which has been established 
(ref 2) as reliable in calculating energy, charge distribution, and 
other properties for the ground state of a large variety of 
molecular species. By means of MIND0/3 calculations (ref 3), the 
following treatment addresses the magnitude of the effect produced 
by the rotation across the three N-N bonds on the total energy of 
the cation. Since MIND0/3 can provide pertinent data on other 
properties for the ground state of the cation, these are also 
included in the results. 



RESULTS 

The input bond lengths and angles used for the MINDO/3 calcu- 
lations are those obtained by the x-ray study (ref 1), including 
the corrections for thermal motion of the atoms assumed to be 
moving independently. To keep the optimized molecular geometry 
calculated by MINDO/3 as close as possible to the experimental 
x-ray geometry (fig. 1), a single optimization parameter was 
requested from the molecular geometry optimization program; speci- 
fically, the 120° N-C-N angle measured by x-ray. The calculated 
optimized geometry expanded this angle to 120.4° and values of 
charge distribution, electron density distribution, heat of forma- 
tion (kcal/mole), ionization potential (eV), electronic energy 
(eV), core-core repulsion energy (eV), total energy (eV), and 
dipole moment (Debye) were obtained. Since the optimized geometry 
differs so slightly from the experimental (only of 0.4° in one 
angle while bond lengths and other angles are the same), it is 
reasonable to assign calculated values to the actual molecular 
geometry of the TAG+ ion in the crystal. Five other sets of data 
were obtained by rotating the primary amino hydrogens from their 
actual positions in the crystal structure (table 1). Because the 
H-N-H angles for the three sets of amino hydrogens are quite dif- 
ferent (96.98°, 105.26°, 122.56°), the rotation performed with 
these hydrogens differs with their location in the cation. 

The effect of the rotation operations on the calculated 
molecular parameters is shown in table 2. The variation of the 
total energy as a function of the rotation sequence is plotted in 
figure 3. 

DISCUSSION 

Within the. constraints imposed on the TAG+ ion structure, 
which limits the energy optimization process to seeking its minimum 
through variation of a single angle, the core-core repulsion energy 
is lowest for the configuration corresponding to that observed from 
the x-ray analysis, (0° rotation, fig. 1).' with rotation, this 
repulsion energy increases to a maximum (gain of 90 eV) at 180° 
rotation, corresponding to the configuration shown in figure 2. By 
contrast, the electronic energy decreases with rotation, reaching 
its minimum value at the 180° rotation angle. The net result, 
however, is that the total energy (the sum of core-core repulsioA 
energy and electronic energy) for the ground state of the TAG+ ion 
is lower for configuration 1 (0° rotation) than for any other con- 
figuration obtained through rotation of the primary amino hydrogens 
(fig. 3). The energy barrier to rotation for all three sets of 
amino hydrogens is calculated to be 1.38 eV (31.8 Kcal) or 10.6 



Kcal per NH2 group. According to the MINDO/3 calculations, the 
configuration adopted by the TAG+ ion in the crystal of triamino- 
guandinium nitrate is anticipated on the basis of minimum energy 
criteria for stability. 

Relaxing the constraints in the optimization process does not 
invalidate this result. Instead of optimizing a single angle in 
the structure, for example, if two bond lengths, one bond angle and 
three twist angles are optimized simultaneously, the energy yielded 
will be lower by approximately 23 Kcal for the x-ray structure 
(configuration 1) than for any other configuration. 

CONCLUSIONS 

According to the MINDO/3 calculations, which treat the TAG+ 
ion as if it were isolated in space and thus subjected to no 
external force, the lowest energy configuration for this cation 
corresponds to that in the crystal of triaminoguandinium nitrate 
where external forces are known to operate. The combination of the 
different forces or dynamic effects in the crystal, only serve to 
produce local perturbations within the cation, resulting in devia- 
tions from the expected C^ symmetry. One interesting general 
conclusion which could be drawn from this work is that the 
triaminoguanidinium ion, irrespective of the nature of the anion, 
would adopt the configuration observed in the nitrate salt simply 
because of its inherently lower total energy content. 
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